logo
définition

Différence avec la maintenance préventive et corrective

La maintenance prédictive se distingue des approches traditionnelles que sont :

  • La maintenance corrective, qui consiste à réparer les équipements après qu’ils soient tombés en panne. C’est une maintenance subie et souvent coûteuse car elle entraîne des arrêts non planifiés, des contraintes sur les délais et des interventions lourdes. Sans compter les risques pour la sécurité et l’environnement.
  • La maintenance préventive, qui vise à entretenir les équipements selon un calendrier établi à l’avance, en fonction des préconisations des constructeurs et du retour d’expérience. C’est un progrès par rapport au tout curatif, mais cette maintenance systématique génère encore des interventions inutiles.

Avec la maintenance prédictive, on passe d’une logique de réaction ou de planification à une logique d’anticipation qui s’appuie sur l’exploitation des données terrain. Les interventions ne sont plus déclenchées sur une base temporelle arbitraire mais en fonction de l’état réel des équipements et d’une prévision de leur évolution dans le temps. Cela suppose de surveiller un grand nombre de paramètres et d’être capable de modéliser des phénomènes complexes grâce à l’IA.

Les technologies clés de la maintenance prédictive

L’intelligence artificielle

L’intelligence artificielle (IA) est au cœur de la maintenance prédictive. Les algorithmes de machine learning analysent les données collectées par les capteurs pour détecter des anomalies et prédire les pannes. Par exemple, un algorithme peut apprendre à partir de données historiques et en temps réel pour identifier des schémas de défaillance et estimer la durée de vie restante des composants. L’IA permet également d’optimiser les interventions de maintenance en fonction de l’état réel des équipements, ce qui réduit les coûts et améliore la disponibilité des machines. Par exemple, une entreprise de production peut utiliser l’IA pour provoquer des interventions de maintenance sur des périodes de faible activité, minimisant ainsi l’impact sur la production.

Le big data

Le big data joue un rôle clé dans la maintenance prédictive en permettant de traiter et d’analyser de grandes quantités de données collectées par les capteurs. Les données historiques et en temps réel sont utilisées pour construire des modèles prédictifs qui permettent de planifier les interventions de maintenance de manière optimale. Par exemple, les géants industriels GE et Rolls-Royce exploitent l’intelligence artificielle pour la maintenance prédictive des moteurs d’avion, analysant les données en temps réel pour détecter les problèmes potentiels et planifier la maintenance nécessaire. Cette approche permet d’améliorer la sécurité, l’efficacité et la performance environnementale des moteurs, tout en optimisant les calendriers de maintenance.

L’Internet des objets

L’Internet des objets (IoT) permet la collecte de données en temps réel à partir de capteurs installés sur les équipements. Ces capteurs peuvent mesurer une variété de paramètres tels que la température, les vibrations, la pression, et bien d’autres encore. Les données collectées sont ensuite transmises à des plateformes cloud où elles sont analysées pour détecter des anomalies et prédire les pannes potentielles. C’est la combinaison de l’IoT, du cloud et de l’IA qui permettent d’aboutir à la maintenance prédictive.  Par exemple, l’ascensoriste KONE installe des capteurs IoT sur ses ascenseurs et les données sont traitées par l’IA qui les analyse en temps réel, permettant de détecter proactivement les problèmes potentiels et de planifier les interventions nécessaires. Ce système améliore la rentabilité, la durée de vie des équipements et la sécurité des usagers, avec des résultats impressionnants : jusqu’à 50% d’interventions en moins après un an et 95% des défaillances potentielles identifiées de manière proactive dès la première année.

La réalité virtuelle et la réalité augmentée

La réalité virtuelle (VR) et la réalité augmentée (AR) sont des technologies prometteuses pour la maintenance prédictive, offrant des avantages significatifs en termes de visualisation, de formation et d’efficacité des interventions.

La réalité virtuelle (VR) permet aux techniciens de visualiser les équipements en trois dimensions dans un environnement virtuel immersif. Cela leur permet d’explorer virtuellement les machines, d’identifier les composants qui nécessitent une maintenance et de simuler des interventions avant de les réaliser sur le terrain. Par exemple, un technicien peut naviguer à l’intérieur d’une turbine complexe, examiner les pièces internes et planifier les étapes de la réparation sans avoir à démonter physiquement l’équipement.

La réalité augmentée (AR), superpose des informations numériques en temps réel sur l’environnement physique. En utilisant des lunettes AR ou des tablettes, les techniciens peuvent voir des instructions de maintenance, des schémas techniques et des données de capteurs directement sur les équipements qu’ils réparent. Cela réduit les risques d’erreurs en fournissant des indications précises et en temps réel, et améliore l’efficacité des interventions. Par exemple, lors de la réparation d’une machine, un technicien peut être accompagné en visualisant des flèches et des annotations superposées sur les composants, indiquant les étapes à suivre et les outils à utiliser.

Ces technologies peuvent se combiner et deviennent la réalité mixte (MR), voire la Réalité Étendue (XR, eXtended Reality) qui désigne toutes les formes de réalité qui combinent des éléments physiques et numériques. Lors des interventions à distance, des experts peuvent guider les techniciens sur le terrain depuis n’importe quel endroit, grâce à un casque connecté.

De plus, cette technologie permet une formation plus immersive et interactive, accélérant l’apprentissage et améliorant la rétention des connaissances.

En résumé, ces technologies, en pleine ascension, jouent un rôle crucial dans la maintenance prédictive en améliorant la visualisation des équipements, en réduisant les erreurs, en augmentant l’efficacité des interventions et en offrant des possibilités de formation avancées.

  • Optimisation de la durée de vie des équipements

En surveillant l’état de santé des machines en continu, la maintenance prédictive permet d’optimiser leur durée de vie. Concrètement, on ne remplace plus systématiquement les composants selon un calendrier prédéfini, mais seulement lorsque c’est vraiment nécessaire, en fonction de leur niveau d’usure réel. Cela évite de changer des pièces encore fonctionnelles et de faire des dépenses inutiles.

De plus, les algorithmes de maintenance prédictive sont capables d’estimer précisément la durée de vie résiduelle (RUL) des équipements, c’est-à-dire le temps pendant lequel ils peuvent encore fonctionner avant la défaillance. Une information précieuse pour anticiper les commandes de pièces de rechange et les interventions. Selon une étude de Deloitte, le temps de fonctionnement et de la disponibilité des équipements augmenteraient de 10 à 20%.

  • Amélioration de la qualité et de la sécurité

En permettant d’intervenir sur les équipements avant qu’ils ne dérivent, la maintenance prédictive a aussi un impact positif sur la qualité des produits fabriqués. Les machines qui fonctionnent de façon optimale, sans à-coups ni défauts, donnent de meilleurs résultats en termes de précision, de régularité et de performance. C’est particulièrement critique dans des secteurs comme la pharmacie, l’agroalimentaire, la mécanique ou l’automobile, où le moindre écart peut entraîner des conséquences majeures.

Autre enjeu : la sécurité. En détectant les anomalies naissantes, la maintenance prédictive permet d’éviter les pannes soudaines qui peuvent mettre en danger les opérateurs ou l’environnement. C’est le cas par exemple dans les usines chimiques, les centrales nucléaires ou les plateformes pétrolières, où les défaillances d’équipements critiques peuvent avoir des conséquences catastrophiques. La maintenance prédictive s’inscrit donc dans une logique de maîtrise des risques industriels.

  • Meilleure gestion des ressources et des pièces détachées

La maintenance prédictive permet aussi d’optimiser la gestion des ressources humaines et matérielles. Côté main d’œuvre, les interventions étant mieux anticipées et ciblées. Les techniciens opèrent des actions de maintenance parfaitement définies et maitrisées sans perte de temps. Ils peuvent se concentrer sur des tâches à plus forte valeur ajoutée comme l’analyse des données, le diagnostic ou l’amélioration continue. Cela valorise leurs compétences et leur engagement.

Côté pièces détachées, la connaissance précise de l’état des équipements et l’anticipation des défaillances permettent de commander les composants au bon moment, sans risquer de rupture de stock ni d’immobilisation des machines. Cela réduit les coûts de possession tout en garantissant la disponibilité des pièces. De plus, l’historique des données collectées aide à mieux comprendre les mécanismes d’usure et à optimiser le choix des fournisseurs et des matériaux.

Cet article vous a plus ? Partagez-le !

Les dernières actualités de la gestion d’entreprise

Société 14 Nov 2024
Les clés de la compétitivité : analyse des enjeux actuels

Dans un monde où l’évolution technologique est fulgurante, les entreprises doivent faire preuve d’agilité et repenser sans cesse leurs stratégies pour rester compétitives. Aujourd’hui, trois enjeux majeurs se dessinent : la servicisation, la data driven company et la continuité numérique.

ERP 05 Nov 2024
La facturation électronique en France : l’État abandonne son projet de plateforme gratuite

La réforme de la facturation électronique en France, prévue pour entrer en vigueur à partir du 1er septembre 2026, connaît un tournant majeur.

Société 18 Oct 2024
Divalto mis à l’honneur sur les ondes : interviews exclusives à la radio
Métier 11 Oct 2024
La maintenance prédictive, pilier de l’industrie 4.0
Presse 11 Sep 2024
CP : Divalto au salon BATIMAT avec ses solutions ERP et CRM dédiées au secteur

Envie de rester informé ? Recevez nos actualités dans votre boîte email.